Skip to main content

Kepler: The Archetypal Nerd

by 

From the Exolab Blog

Modern technology has enabled us to find thousands of planets orbiting stars other than our own Sun, only within the past few decades. Most of these planets fall into three broad categories: ice giants, gas giants, or hot super-Earths. The most intriguing kind of exoplanet, the holy grail of exoplanet discovery, Earth-like planets in their respective habitable zones, is less commonly found. The Kepler Mission is a NASA Discovery mission that is responsible for finding a majority of the planetary candidates we know of today, and is designed to find these diamonds in the rough over the course of its full mission lifetime. Kepler has taken us leaps and bounds beyond the big puffy hot-Jupiters we were first aware of, and its success is taking large steps toward discovering extraterrestrial life. So who was the eponym, Kepler? It’s a name we’ve all heard, but it doesn’t carry with it the same stories the other giant names of science carry: Newton’s apple, Galileo’s finger, Archemides’s “Eureka!”

Contrary to popular belief, Kepler is not holding chopsticks

There is not much hype about Johannes Kepler, and perhaps that's because at first he just wasn't the most popular guy. Being born premature and constantly sick wasn't really conducive to running around with the other boys in grammar school, and his bookworm tendencies left him with few admirers. As a bit of a misfit, he set himself to the pursuit of knowledge, and while the others would ridicule him, Kepler voraciously set his mind to a myriad of subjects, such as poetry, astrology, theology, and mathematics . He kept a detailed daily journal, and many sections were on his quarrels with and hatred for his classmates. As he would write later, "they were always rivals in worth, honors, and success.” Yet for all the disapproval, Kepler’s unorthodox approaches to problems were an advantage in his scientific endeavors. He was one of the first to defend the Copernican heliocentric system using a theological basis, and he consistently came out on top intellectually. His first landmark work, Mysterium Cosmographicum, in which he discussed the geometry of the universe, was published when he was only twenty-four.

Like Newton, who would come into the picture some fifty years later, Kepler’s early life was marked by a combination of scientific brilliance and childhood unpopularity, and also like Newton, he was a devout Christian. Kepler attended seminary for much of his early life, and he was usually not far from a theological text. In fact, in all of his scientific achievements he would take both a philosophical and mathematical approach, believing that the cosmos was the ultimate revelation of the glory of the creator. Even his defense of the heliocentric model of the universe had its theological foundations. Seeing the universe as a portrait of God, he viewed the Sun as symbolic of God the Father, the "stellar sphere" as the Son, Jesus, and the space in between everything as the Holy Spirit. This was all originally included in Mysterium Cosmographicum, until his publisher later removed it. He journaled regularly about his daily life, which has been quite useful for modern historians. He was as much of a philosopher as a scientist, and he frequently combined the two disciplines. Always remaining true to his theoretical side, he wrote in a letter, “Don't sentence me completely to the treadmill of mathematical calculations. Leave me time for philosophical speculations, my sole delight!” Arthur Koestler writes in his modern biography of Kepler: “[he was] the most reckless and erratic spiritual adventurer of the scientific revolution.”

In the midst of his theological studies however, he was asked to teach mathematics, and accepted a position at a Protestant school in Austria. It was there he completed Mysterium Cosmographicum. Henceforth he held many prestigious positions, including the one previously held by Tycho Brahe of Imperial Mathematician. Brahe’s death allowed Kepler access to his highly protected data, thus heralding Kepler's most prolific age. In Astronomia Nova, he published his first two laws of planetary motion:
1. Every planet follows an elliptical orbit with its host star at one focus.
2. A line drawn from the star to the planet sweeps out equal areas in equal times.
Despite all his mathematical genius, his works were praised by few and scoffed at by many. There was much discussion over the first law. Some of Kepler’s contemporaries believed that this shattered the “circularity and uniformity of motion” and could not comprehend the depth of the work he had done. And when Kepler theorized that the moon had influence upon the tides, Galileo himself remarked, “That concept is completely repugnant to my mind.” Still, he rose to fame as a scholar.



Ten years after the publication of the first two laws, Kepler’s third law, arguably the most significant for modern planetary scientists, was unveiled in his book Harmonices Mundi.
3. The square of the orbital period is directly proportional to the cube of its semi-major axis.
This law, made concrete by Newton as 
 
is an essential ingredient to our modern understandings of planetary systems. And ever the philosophical scientist, Kepler also discussed literally the “music of the spheres” in which he revealed the physical harmonies found in the motion of planets.

As a Protestant during The Thirty Years War, 1618-1648, Kepler was forced to leave his home and travel during his last years. He died without pomp and circumstance, but his work would build a foundation for great scientists to come. Though Kepler now is considered one of the keystone figures of the Scientific Revolution, at the time he was criticized for combining physics and astronomy, generally considered two separate branches of philosophy and natural science. He was one of the first to see the necessity to link philosophy and science, and he remained a devout Christian to the end. His life shows that philosophy, theology, and the scientific method aren’t necessarily mutually exclusive; in fact for Kepler, each was essential for a complete and holistic perspective on the others.




I measured the skies, now the shadows I measure
Skybound was the mind, earthbound the body rests.”
Kepler’s epitaph

Comments

Popular posts from this blog

A view from your shut down

The Daily Dish has been posting reader emails reporting on their " view from the shutdown ." If you think this doesn't affect you, or if you know all too well how bad this is, take a look at the growing collection of poignant stories. No one is in this alone except for the nutjobs in the House. I decided to email Andrew with my own view. I plan to send a similar letter to my congressperson. Dear Andrew, I am a professor of astronomy at the Harvard-Smithsonian Center for Astrophysics (CfA). The CfA houses one of the largest, if not the largest collection of PhD astronomers in the United States, with over 300 professional astronomers and roughly 100 doctoral and predoctoral students on a small campus a few blocks west of Harvard Yard. Under the umbrella of the CfA are about 20 Harvard astronomy professors, and 50 tenure-track Smithsonian researchers. A large fraction of the latter are civil servants currently on furlough and unable to come to work. In total, 147 FTEs

back-talk begins

me: "owen, come here. it's time to get a new diaper" him, sprinting down the hall with no pants on: "forget about it!" he's quoting benny the rabbit, a short-lived sesame street character who happens to be in his favorite "count with me" video. i'm turning my head, trying not to let him see me laugh, because his use and tone with the phrase are so spot-on.

The Long Con

Hiding in Plain Sight ESPN has a series of sports documentaries called 30 For 30. One of my favorites is called Broke  which is about how professional athletes often make tens of millions of dollars in their careers yet retire with nothing. One of the major "leaks" turns out to be con artists, who lure athletes into elaborate real estate schemes or business ventures. This naturally raises the question: In a tightly-knit social structure that is a sports team, how can con artists operate so effectively and extensively? The answer is quite simple: very few people taken in by con artists ever tell anyone what happened. Thus, con artists can operate out in the open with little fear of consequences because they are shielded by the collective silence of their victims. I can empathize with this. I've lost money in two different con schemes. One was when I was in college, and I received a phone call that I had won an all-expenses-paid trip to the Bahamas. All I needed to d